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In the present study we establish a phase transition in the nearest-neighbor con-
tinuum Potts model. The repulsion between particles of different type acts only
on a nearest-neighbor graph, more precisely a subgraph of the Delaunay graph.
This work is an adaptation of the Lebowitz and Lieb soft-core continuum Potts
model.
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1. INTRODUCTION

The study of phase transitions holds an important place in statistical
mechanics and in probability theory. Of course many results are known in
the lattice case, but in the continuous setting, the situation is quite different
and rather unsatisfactory. The case of the Widom–Rowlinson was solved in
1971 by Ruelle (27) using a version of the Peierls argument. Lebowitz and
Lieb (18) extended his result by replacing the hard-core repulsion by a soft-
core repulsion based on the distance between unlike particles. They require
that the soft-core repulsion be sufficiently high or that the temperature be
low enough. The extension of these results to continuum Potts models can
be found in ref. 12, allowing global superstable interaction in a modern
large-deviation spirit and in connection with percolation theory (see also
ref. 8). The interest in percolation problems has grown rapidly during the
last decades: see, for example, Meester and Roy (22) for continuum percola-
tion, and also the references therein, Lyons and Peres (20) for percolation on



trees and networks, and Häggström (16) for percolation on more general
graphs. Another way to explore phase transitions is by studing liquid vapor
phase transitions of the Van der Waals type based on mean-field equations
coupled with the powerful Pirogov–Sinai theory as described in ref. 19 in a
continuous setting for some potential of the Kac form.

In previous papers, we were interested in the nearest-neighbor Gibbs
models introduced by Baddeley and Møller. (1) We have already proven the
existence and unicity at small activity of stationary Gibbs states for such
models in refs. 2–4.

The present paper gives a result of phase transition of the Widom–
Rowlinson type. It is an attempt to replace the soft repulsion between
several species of particles based on the distance (as introduced in refs. 29,
18, and 12) by another kind of soft repulsion mainly based on the structure
of some graph. The most simple multi-type particle system would be the
one with no more interaction than constant pairwise interspecies repulsion
acting on the neighbors of the Delaunay graph. This particular case is
really interesting since the interspecies repulsion is clearly independent of
the distance between particles and consequently some possible percolation
phenomenon, when it occurs, would be independent of the activity param-
eter z. Since a phase transition for a model of such kind is mainly related
to the percolation, one could assert that if phase transition occurs for
some particular value of z then it will occur for any other value of z. This
behavior is really different from the one encountered for models with soft
interspecies repulsion which depend only on the distance between particles.
Let us note that this behavior may occur also for more general forms of
interaction function than the constant one. Unfortunately, the proof of the
existence of such a Gibbs point process seems as difficult as in the one-type
point process with constant pairwise interaction on the Delaunay graph.
This special case looks like the classical Poisson point process, but the
quasilocality and relative compactness properties seem to be difficult to
prove. It reminds one of problems described, for example, in ref. 28 and the
references therein. One way among others (see refs. 3 and 2) to avoid the
problem of existence of the multi-type particle system is to add some clas-
sical hard-core component interaction between particles of any species and
to assume some kind of range property. If the hard-core distance d is small
enough and the range distance R is large enough, one may expect that this
new model will exhibit a behavior very similar to the original one (corre-
sponding to d=0 and R=+.) discussed above.

For the proof of the main result, we used as in ref. 12 the random-
cluster representation and adapted technical lemmas in our case. We also
used a standard comparison argument as in refs. 16 and 12 in order to
prove site and bond percolation in the dependent case.
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We would like to point out some differences between our model and
the classical soft-core Lebowitz and Lieb model. In the planar case, the
Delaunay graph contains a number of edges proportional to the number of
points, whereas this number is quadratic in the complete graph. Moreover,
the neighborhood of a point in the Delaunay graph depends on the configu-
ration of the point process, whereas in the classical case it depends only on
the distance between points. So the activity parameter z does not play the
same role in the two models because of the self-similarity property of the
Delaunay graph. If z increases, the Delaunay neighborhood of a given point
remains the same, whereas in the classical case it becomes strongly con-
nected. Thus, in the classical case, the probability in the edge drawing mech-
anism can be chosen arbitrarily small. It is known (see refs. 6 and 16), at
least for an ergodic hard-core or Poisson point process that the critical bond
or site value on the Delaunay graph is not trivial. All these differences cause
some difficulties for the proof of the existence of a phase transition (for
example, Lemma 3.4 of ref. 12 does not work). The price to pay is to have an
interspecies repulsion strong enough in our model to keep the percolation
property and then a phase transition. We can even approach the critical
value by simulation for the repulsion parameter of our model (see Fig. 5).

We may hope that nearest-neighbor continuum models are interesting
for low temperature (not too low for a classical approach) as an alternative
of standard models on regular networks, because they allow more degrees
of freedom and may find application in crystallography. We may think of
the rigidity and plasticity properties of glasses or the study of ferromagnetic
fluids or liquid crystals (smectic A, C, nematic N). See, for example, refs. 9
and 13 and the references therein. On the other hand, recall that one
example of the utilization of the Ising model is the study of the order–
disorder transition of binary alloys or ionic crystals observed by Bragg
diffraction of X rays. It is well known that Voronoi graphs and regions
(rather called the Wigner–Seitz grid and the Brillouin zone within the
framework of physics) hold a fundamental place for the understanding of
electrical current, wave propagation, and phase transitions.

The paper is organized as follows. After giving some notations and
preliminaries in Section 2, we introduce our model based on the Delaunay
graph (Section 3). In Section 4 we recall the construction of the random-
cluster representation and we give the main results of Georgii and
Häggström, slightly adapted in our case. In Section 5 we give a result of
percolation for the nearest-neighbor continuum random-cluster distribu-
tion following the lines of a proof proposed by Häggström, (16) which allows
a phase transition for the nearest-neighbor continuum Potts model. Finally,
we present simulations for our model using the Metropolis Hasting algo-
rithm in Section 6.
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2. NOTATIONS AND DEFINITIONS

Without loss of generality, this study takes place in R2, though all the
results are still true in Rd (d \ 2).

Let us first introduce some general notations. |A| denotes the Lebesgue
measure, when the set A is a bounded Borel set of R2, and the counting
measure, when the set A is discrete.

For any bounded Borel set L and real d > 0,

L ı d= 3
y ¥ B(0, d)

{z+y, z ¥ L}

denotes the d-minus-sampling of L. For two sets A and AŒ such that
AŒ … A,

A0AŒ={x ¥ A, x ¨ AŒ}.

Furthermore, 1A( · ) denotes the indicator function of the set A.
Let B(x0, x1, x2) be the open ball which contains x0, x1, x2 in its topo-

logical boundary and R(B(x0, x1, x2)) be the corresponding radius.
Let Xf and X be the sets of finite and locally finite subsets of R2. The

set of configurations in a measurable set L … R2 will be denoted by XL. In
fact, we consider tesselations in general position as in Møller, (24) which are
of probability one for any stationary point process. More precisely:

(a) no three points lie on a straight line of R2, and

(b) no four points lie on the boundary of a circle.

We fix here an integer q \ 2 which is the number of different types of a site.
Let X=(X1,..., Xq) ¥ X (q) be uniquely determined by the pair (X, s),
where X=sp(X)=X1 2 · · · 2 Xq ¥ X is the set of all occupied positions
and s=s(X): X Q {1,..., q} such that s(x)=l if x ¥ Xl (l=1,..., q). The
set X is equipped with the s-algebra generated by the counting variable
|X 5 D| for X ¥ X and for bounded measurables D … R2. X (q) is equipped
with the product s-algebra restricted to Xq.

Definition 1. Let X ¥ X. The Delaunay triangulation Del 3(X) of X
is the unique one in which the interior of the circle circumscribed by every
triangle of the triangulation does not contain any point of X in its
interior. (24) The Delaunay graph, Del2(X), is then defined by the set of
edges of Del3(X) (see Fig. 1).

82 Bertin et al.



Fig. 1. The Delaunay graph for 500 sites at the left and the R0-Delaunay graph for the same
sites, R0=30, at the right. The R0-Delaunay graph is not necessarily a connected subgraph of
the Delaunay graph.

Definition 2. The set of Delaunay triangles S(x0, x1, x2) ¥ Del3(X)
such that

R(B(x0, x1, x2)) > R0

constitutes the Delaunay subgraphs DelR+
0

3 (X) and DelR0
3 (X)=Del3(X)0

DelR+
0

3 (X). Let DelR0
2 (X) be the set of edges of DelR0

3 (X) (see Fig. 1).

Definition 3. Let X ¥ X and x be a point of X. The Voronoi region
VorX(x) associated with x is the set of points that are nearer to x than any
of the other points of X. The Voronoi diagram is the set of all the Voronoi
regions.

One can notice that all Voronoi regions are polygonal and convex.
The Voronoi diagram is the dual orthogonal of the Delaunay triangulation.
This characterization justifies that the Delaunay graph is a kind of ‘‘nearest-
neighbor’’ graph. (1)

Let L be a bounded Borel set with a specific partition:

L=0
k, l

Dk, l,

where

Dk, l= 0
8

i, j=0
D i, j

k, l
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and

D i, j
k, l=[9Lk+Li, 9Lk+L(i+1)]× [9Ll+Lj, 9Ll+L(j+1)].

The set Dk, l is a square of size 9L and D i, j
k, l is a ‘‘little’’ square of size L. This

kind of partition was already introduced by Häggström in order to prove
site and bond percolation on the Delaunay graph for almost all configura-
tions of points of a stationary Poisson process.

Set E=1 − psite
c (Z

2)
3 , where p site

c (Z2) is the site percolation critical value for
the square lattice.

3. PRESENTATION OF THE MODEL

Our model is a q-typed particle system in R2, with soft-core exclusion
between particles of different color based on the R0-Delaunay graph and
hard-core pair interaction between all particles. Given X ¥ Xq

f , the finite
energy is expressed as

V(X)=Vk(X)+Vj(X), (1)

where the first term does not depend on the color of the particles. We put a
hard-core pair interaction between all particles:

Vk(X)= C
{x, y} ı X

k(||x − y||),

where

k(r)=˛+. if r < d0,

0 otherwise.

We keep this hard-core condition to control the local energy in Proposi-
tion 1 and for some technical reason in Lemma 1.

The second term in (1) describes the repulsion between particles of
different type:

Vj(X)= C
{x, y} ¥ DelR0

2 (X)
s(x) ] s(y)

j(||x − y||).

For simplification we take

j(r)=˛A if r < 2R0,

0 otherwise,
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where A > 0. With such potential j, we can write:

Vj(X)=A|{{x, y} ¥ DelR0
2 (X) : s(x) ] s(y)}|.

Furthermore, the hard-core distance d0 and the range R0 satisfy the
following assumption: there exists some constant L such that

0 < d0 <
L
2

and `2 L < 2R0. (2)

In particular, `2d0 < R0. The originality of our work is to show that the
R0-Delaunay repulsion (replacing the usual repulsion on the complete
graph (18)) between particles of different type is strong enough to keep a
phase transition.

Given a finite box L … R2 as in ref. 12, for the activity parameter z, the
Gibbs distribution QL | Y on

RL={Y ¥ X
(q)
L

c : 0 < ZL | Y < .},

where ZL | Y is the partition function, is given by

QL | Y(dX)=Z−1
L | Y exp(− HL | Y(X)) pz

L(dX1) · · · pz
L(dXq), (3)

where

HL | Y(X)= C
{x, y} ı X 2 Y
{x, y} 5 L ] ”

k(||x − y||)+ C
{x, y} ¥ DelR0

2 (X 2 Y)
s(x) ] s(y)

{x, y} 5 L ] ”

j(||x − y||)

is the energy in L with the wired tempered boundary condition

Y=(Y, ”,..., ”)

of type 1 particles and pz
L is the stationary Poisson point process on XL

with constant intensity z, i.e.,

F f dpz
L=exp(− z |L|) C

.

n=0

zn

n!
F

L
n

f({x1,..., xn}) dx1 · · · dxn

for any bounded measurable function f on XL.

Definition 4. A Gibbs probability Q on X (q) is a nearest-neighbor
continuum Potts measure with activity z and interaction potentials j and
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k if the probability kernel Y Q QL | Y from X (q)
L

c to X (q)
L is a version of the

conditional distribution under Q of the configuration in L given the con-
figuration outside L.

The existence of such a measure is easy to prove as an extension of
ref. 3.

Proposition 1. There exists at least one nearest-neighbor continuum
Potts measure.

Proof. The local energy required to insert a point x into a given
configuration X is equal to:

E(x, X)=V(X 2 {x}) − V(X)

= C
y ¥ X

k(||x − y||)+ C
{x, y} ¥ DelR0

2 (X 2 {x})
s(x) ] s(y)

j(||x − y||)

− C
{y, z} ¥ DelR0

2 (X)
{y, z} ¨ DelR0

2 (X 2 {x})
s(y) ] s(z)

j(||y − z||).

We can easily see that

E(x, X)=E(x, X 5 B(x, 2R0)) (4)

and because of the finite range property (Eq. (4)) and the hard-core condi-
tion, we have:

E(x, X) \ − A
4pR2

0

pd2
0

. (5)

Thus, the local energy has a range (Eq. (4)) and is bounded below
(Eq. (5)). These two properties ensure that the set of Gibbs distributions
with local specifications defined using QL | Y is not empty (see ref. 3). L

Now we are able to assert the main result of this article.

Theorem 1. If z and A are sufficiently large, there exist at least q
distinct nearest-neighbor continuum Potts measures.

The rest of this paper is devoted to the proof of this theorem.
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4. SOME RESULTS ON RANDOM-CLUSTER REPRESENTATION

For the convenience of the reader, we recall the main results given by
Georgii and Häggström, which are slightly adapted to our framework
(ref. 12, Section 2).

As in Georgii and Häggström, (12) we construct a probability measure P
using the Fortuin–Kasteleyn representation:

• Distribution of particle positions.

Pzq
L | Y(dX)=Z−1

L | Y exp 1− C
{x, y} ı X 2 Y
{x, y} 5 L ] ”

k(x − y)2 pzq
L | Y(dX)

• Type-picking mechanism. For a fixed set of positions X ¥ XX | Y, we
denote by lX, L the distribution of

({x ¥ X : yx=s})1 [ s [ q ¥ X (q),

where (yx)x ¥ X 5 L are independent and uniformly distributed on the q
colors, whereas yx=1 for x ¥ X0L=Y (wired boundary condition).

• Edge drawing mechanism. Let mX, L denote the distribution of the
random edge configuration {e ¥ EX : ge=1}, where (ge)e ¥ EX

are indepen-
dent {0, 1}-valued random variables with

prob(ge=1)=pL(e)=˛1 − exp(− A 1DelR0
2 (X)(e)) if e={x, y} ¥ ER

2 0EL
c,

1DelR0
2 (X)(e) if e ¥ EL

c,

where ER
2={e={x, y} … R2 : x ] y} is the set of all possible edges

between pairs of points in R2 and ED={e ¥ ER
2 : e ı D} is the set of all

edges within D. Here we have slightly adapted the edge drawing mechanism
to our model.

The probability measure Pzq
L | Y on X (q) ×E is then defined by:

Pzq
L | Y(dX, dE)=Z−1

L | YPzq
L | Y(dX) lX, L(dX) mX, L(dE),

where E={E … ER
2 : E locally finite}. Let

W=3(X, E) ¥ X (q) ×E : C
{x, y} ¥ E

C
q

s=1
1Xs

(x)(1 − 1Xs
(y))=04 ;
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then the following conditional measure is the random-cluster measure:

PW=Pzq
L | Y( · | W),

where Pzq
L | Y(W) > 0.

Now we can recall the following results:

— Proposition 2.1 of ref. 12: if we disregard the edges of the random-
cluster representation and look only at the particle positions and their type,
then we obtain the nearest-neighbor continuum Potts model. The proof is
completely general and does not depend on the underlying graph. The key
of the proof is the form of the probability pL of the edge drawing mechanism.

— Proposition 2.2 of ref. 12: if we disregard the type of particles of
the random-cluster representation and look only at the particle positions
and the edges, then we obtain the continuum random-cluster distribution:

CL | Y(dX, dE)=Z−1
L | YqKL(X, E)Pz

L | Y(dX) mX, L(dE), (6)

where KL(X, E) is the number of connected components of (X, E) that are
completely contained in L plus the infinite cluster outside L due to the
wired boundary condition.

— Proposition 2.3 of ref. 12: we may express a relation between the
number of particles of type 1 inside any box D … L and the percolation
property of the random-cluster model, which is the key of the proof of the
main result ( Theorem 1):

Proposition 2. For any measurable D … L,

F (qND, 1 − ND) dQL | Y=(q − 1) F ND Y L
c dCL | Y,

where, for any box D … R2,

ND(X)=|{x ¥ X 5 D}|

is the random variable which represents the number of points in X 5 D,

ND, 1(X)=|{x ¥ X 5 D : s(x)=1}|

is the random variable which represents the number of points of color 1 in
X 5 D,

ND Y L
c(X, E)=|{x ¥ X 5 D : x belongs to a cluster connected to

Lc in (X, E 5 DelR0
2 (X))}|
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is the random variable which represents the number of points in X 5 D

connected to any point in Lc in the random graph E 5 DelR0
2 (X), and

{D Y Lc}={ND Y L
c > 0}

is the event that there exists at least a point in X 5 D and a point in Yc
L

connected in the random graph E 5 DelR0
2 (X).

Remark 1. Because of the edge drawing mechanism, {D Y Lc} is
also the event that there exists a point in X 5 D connected to infinity in the
random graph E 5 DelR0

2 (X).

One can write CL | Y as follows:

CL | Y(dX, dE)=ML | Y(dX) m (q)
X, L(dE),

where

m (q)
X, L(dE)=

qKL(X, E)mX, L(dE)
> qKL(X, E)mX, L(dE)

and the distribution of particle positions ML | Y is given by the marginal
distribution CL | Y( · , E). With such writing, it is easy to see that we have

m (q)
X, L R m̃X, (7)

where m̃X denotes the distribution of the random edge configuration
{e ¥ EX : g̃e=1} ¥ E, where (g̃e)e ¥ EX

are independent {0, 1}-valued random
variables with

prob(g̃e=1)=p̃=
1 − exp(− A 1DelR0

2 (X)(e))

1+(q − 1) exp(− A 1DelR0
2 (X)(e))

.

For our proof of the phase transition, we will need here an additional
type-picking mechanism. For a fixed set of positions X ¥ Xq, we let l̃X

denote the distribution of

({x ¥ X : ỹx=s})1 [ s [ q ¥ X (q),

where (ỹx)x ¥ X are independent Bernoulli distributed:

prob(ỹx=s)=˛ p̃ if s=1,

1 − p̃ if s ] 1.
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5. PERCOLATION IN THE R 0-DELAUNAY CONTINUUM

RANDOM-CLUSTER MODEL

Now we establish percolation for the R0-Delaunay continuum random-
cluster distribution CL | Y for sufficiently large z and A and the boundary
condition Y containing sufficiently many particles (Proposition 3). The
proof is done using a standard comparison argument. Then the result of
phase transition ( Theorem 1) for the R0-Delaunay continuum Potts model
follows from Proposition 2. Let

ND Y L
c(X)=|{x ¥ X 5 D : x belongs to a 1-cluster connected to

Lc in (X, DelR0
2 (X)}|

be the random variable which represents the number of points in X 5 D

connected to Lc by points of type 1 in DelR0
2 (X) and

{D Y Lc}={ND Y L
c > 0}

the event that there exists an R0-Delaunay path of particles of the same
type between a particle of D and a particle of Lc. Let us define for each
event A which is measurable in L:

C2 site
L | YLc (A)=F ML | Yc

L
(dX) F l̃X(dX) 1A(X).

In order to control the measure ML | Y, let us also define for X ¥ XL | Y:

hL(X)=Z−1
L | Y F mX, L(dE) qKL(X, E),

where ZL | Y is as in (6). Note that hL is the Radon–Nikodym derivative of
ML | Y with respect to Pz

L | Y.

Lemma 1. ,a > 0 such that -L … R2, X ¥ RL, and x ¥ L0X,

hL(X 2 {x})
hL(X)

\ a > 0.

Proof. Let us denote:

Eext
x | X=DelR0

2 (X) 5 DelR0
2 (X 2 {x}),

E+
x | X=DelR0

2 (X 2 {x})0DelR0
2 (X)={{x, y} ¥ DelR0

2 (X 2 {x})},

E−
x | X=DelR0

2 (X)0DelR0
2 (X 2 {x})=DelR0

2 (X)0E+
x | X.
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Furthermore,

• mext
x | X is the edge drawing mechanism on the random edges Eext

x | X;
• m+

x | X is the edge drawing mechanism on the random edges E+
x | X;

• m+
x | X is the edge drawing mechanism on the random edges E−

x | X.

hL(X 2 {x})
hL(X)

=
> mX 2 {x}, L(dE) qK(X 2 {x}, E)

> mX, L(dE) qK(X, E)

=
> mext

x | X(dE1) qK(X, E1) > m+
x | X(dE2) qK(X 2 {x}, E1 2 E2) − K(X, E1)

> mext
x | X(dE1) qK(X, E1) > m−

x | X(dE2) qK(X, E1 2 E2) − K(X, E1)
.

But, because of the finite range condition on j and the hard-core condition
on k, we have

K(X 2 {x}, E1 2 E2) − K(X, E1) \ −
4pR2

0

pd2
0

.

Moreover,

K(X, E1 2 E2) − K(X, E1) [ 0.

Thus,

hL(X 2 {x})
hL(X)

\ q
−

4R
2
0

d
2
0 =a > 0. L

Lemma 2. For all cells N=D i, j
k, l … L and any YNc ¥ RN, we have

ML, N | YNc (|X 5 N| \ 1) > 1 −
E

81

for large enough z.

Proof.

ML, N | YNc (|X 5 N|=1)
ML, N | YNc (|X 5 N|=0)

=z F
N

exp(− Hk
N | YNc ({x}))

hL(YNc 2 {x})
hL(YNc)

dx.

From Lemma 1 we have

ML, N | YNc (|X 5 N|=1)
ML, N | YNc (|X 5 N|=0)

\ z F
N

a exp(− Hk
N | YNc ({x})) dx

\ az |N ı d0 |.
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Thus,

ML, N | YNc (|X 5 N|=0) [
1

az |N ı d0 |

and

ML, N | YNc (|X 5 N| \ 1) > 1 −
1

az |N ı d0 |

> 1 −
E

81

for z large enough (|N ı d0 | > 0 because d0 < L
2 ). L

The following is an adaptation of the proof of Proposition 7.3 of
ref. 16 to our context.

Lemma 3. Let z and A be large enough. Then

C2 site
L | YLc ({D Y Lc}) \ t > 0

for any D=Dk, l … L.

Proof. We proceed as in ref. 16. Let N=D i, j
k, l for some i and j in

{0,..., 8}. By Lemma 2, we can take z large enough such that

-YNc ¥ RN, ML, N | YNc (|X 5 N|=0) [
E

81
,

which implies

-YDc ¥ RD, ML, D | YDc (|X 5 N|=0) [
E

81
.

Then, for

Ak, l= 3
8

i, j=0
(|X 5 D i, j

k, l | \ 1),

ML, D | YDc (Ak, l) \ 1 − C
8

i, j=0
ML, D | YDc (|X 5 D i, j

k, l |=0) > 1 − E > p site
c (Z2).
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Let Ck, l be the following event:

Ck, l={X: -X ¥ Ak, l, -x ¥ X 5 Dk, l , s(x)=1}.

Let A be large enough such that

p̃ \ (1 − E)
1

81M,

where

M=5 L2

pd2
0

6+1

and [ · ] denotes the integer part. We have

C2 site
Dk, l | YDc

k, l
(Ck, l)=F ML, Dk, l | YDc

k, l
(dX) 1Ak, l

(X) p̃ |X 5 Dk, l|

\ (1 − E) p̃81M \ (1 − E)2

> 1 − 2E > p site
c (Z2). (8)

Then, by a result of percolation theory, there exists a path of boxes Di, j

such that Ci, j occurs, from any Dk, l … L to Lc.
Assume that Ak, l and Ak+1, l occur simultaneously. Let us define the

‘‘central band’’ of Dk, l 2 Dk+1, l:

CBk : k+1, l=10
4

i=0
D4+i, 4

k, l
2 2 10

4

i=0
D i, 4

k+1, l
2 .

We keep in all the squares Dk, l and Dk+1, l the points

H={x ¥ X 5 (Dk, l 2 Dk+1, l) : VorX(x) 5 CBk : k+1, l ] ”}.

All the edges of the restriction of the graph DelR0
2 (X) to H are smaller than

`2L because all the little squares D i, j
k, l, D i, j

k+1, l, i, j=0,..., 8, contain at least
1 point and the circles circumscribed to the Delaunay triangles are empty.
Thus the restriction of the graph DelR0

2 (X) to H is equal to the restriction
of the graph Del2(X) to H. Since the Voronoi polygons form a connected
covering of the ‘‘central band,’’ we are able to connect any point of D4, 4

k, l to
any point of D4, 4

k+1, l in the graph DelR0
2 (X) inside Dk, l 2 Dk+1, l.

Thus, using (8), we have

C2 site
L | YLc ({D Y Lc}) \ t > 0. L
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Proposition 3. Let z and A be large enough. Then there exists t > 0
such that

F dCL | YLc ND Y L
c \ t > 0

for any D=Dk, l … L.

Proof.

F CL | YLc (dX, dE) ND Y L
c(X, E)=F ML | YLc (dX) F m (q)

X, L(dE) ND Y L
c(X, E)

(9)

\ F ML | YLc (dX) F m̃X(dE) ND Y L
c(X, E)

(10)

\ F ML | YLc (dX) F m̃X(dE) 1{D Y L
c}(X, E)

(11)

\ F ML | YLc (dX) F l̃X(dX) 1{D Y L
c}(X) (12)

=C2 site
L | YLc ({D Y Lc}) \ t > 0. (13)

The inequality (10) is due to the stochastic domination of m̃X by m (q)
X, L

(see Eq. (7)). As site percolation implies bond percolation, we have (12).
Lemma 3 gives (13). L

Proof of Theorem 1. By Propositions 2 and 3 we have

F dQL | Y(k)(qND, k − ND) \ (q − 1) E

for k=1,..., q, where

Y (k)=(”,..., ”, Y, ”,..., ”)

is a tempered boundary condition of type-k particles.

ND, k(X)=|{x ¥ X 5 D : s(x)=k}|

is the random variable which represents the number of sites of type k in
X 5 D. The existence with such a boundary condition for the nearest-
neighbor continuum Potts measure is established in Proposition 1. Thus,
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Theorem 1 follows by the classical argument giving at least q distinct mea-
sures with distinct intensity of colors. L

Remark 2. Using similar arguments as in Proposition 3, the random-
cluster distribution can be upper bounded by the so-called random edge
model of hard-core particles on the Delaunay graph. It is known (see
ref. 6), at least for an ergodic hard-core point process, that the critical
bond or site value pb

c , p s
c on the Delaunay graph is bounded below. Thus, if

A is small enough such that the edge probability becomes smaller than pb
c ,

then there is no percolation for the random-cluster distribution and of
course no phase transition of this type (with distinct intensity of colors, see
Fig. 4).

Remark 3. We may ask if the q nearest-neighbor continuum Potts
measures are ergodics and if a variational formula relating pressure,
entropy, and internal energy can be obtained. One way is to try to apply
the large-deviation theory based on empirical measures developed in
refs. 11 and 12 for the model given in this paper and more generally for the
nearest-neighbor models given in ref. 3.

Remark 4. An interesting question is to know on what Delaunay
subgraph the repulsion is strong enough to maintain a phase transition. In
terms of percolation, the question is to know if bond percolation is main-
tained in subgraphs of this type. Reference 6 gives a positive answer for the
Gabriel graph. Furthermore, as the critical value is trivial and equal to 1
for the minimum spanning forest a negative answer should be given.

Remark 5. For the k-nearest-neighbor graph, we can see, following
the lines of this article, that for k sufficiently large, the repulsion is strong
enough to maintain a phase transition because of the result of percolation
given in ref. 17.

6. SOME SIMULATIONS

Ripley (26) used Preston’s spatial birth and death processes (25) to
simulate spatial patterns in the fixed number case. The simulation proce-
dure used here is a direct adaptation of the Geyer and Møller proposal (15, 14)

to the R0-Delaunay energy. The algorithm is the following (rand() desig-
nates a random variable uniformly distributed in [0, 1]):
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— Initialize with a given permissible configuration. Here, the initial-
ization is done with the empty configuration in the square L=[0; 700]2

ı 100 and the fixed wired boundary configuration Y[0; 700]2
0L in the exterior

of L where all the sites have the type 1 (see Figs. 2–4);

— Repeat a large number of times the following steps:

• p=rand();

• if (p [ 1
2) then

– choose x uniformly in XL;

– if rand() [ min{1, |XL |
z |L| eE(x, XL 0{x} 2 Y[0; 700]20L)}, then XL P XL 0{x};
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Fig. 2. Simulation of the Delaunay continuum Potts models with z=0.04, A=1, R0=30,
and d0=10 in the square [0, 700] × [0, 700].
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Fig. 3. Simulation of the Delaunay continuum Potts models with z=0.04, A=0.7, R0=30,
and d0=10 in the square [0, 700] × [0, 700].

• if (p > 1
2), then

– choose x uniformly in L,

– set s(x)=1 with probability 1
2 ,

– if rand() [ min{1, z |L|
|XL|+1 e−E(x, XL 2 Y[0; 700]20L)}, then XL P XL 2 {x}.

The previous algorithm simulates a Markov chain which is Harris recurrent
and geometrically ergodic with invariant Gibbs distributions. Indeed, as we
have seen before, the local energy is lower bounded because of the range
condition between particles of different type and the hard-core condition
between all the particles (see Eq. (5)). One can note that there exist other
dynamics to compute a realization of our model, but this is not the purpose
of this article (see, for example, refs. 23, 10, and 21).
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Fig. 4. Simulation of the Delaunay continuum Potts models with z=0.04, A=0.1, R0=30,
and d0=10 in the square [0, 700] × [0, 700]. A is too small to observe a phase transition.

An incremental approach is adopted (deletion and insertion (7)) in order
to compute the Delaunay triangulation and to produce birth and death
simulations. Furthermore, due to a Markov property, (5) the computation of
E(x, X) is local. The Markov local property combined with the incremen-
tal approach leads to a great reduction of the execution time.

As we see in Figs. 2 and 3, after 2 million iterations almost all the sites
of XL have the same type as the exterior configuration Y[0; 700]2

0L. Thus
the boundary condition Y[0; 700]2

0L influences the type of sites of XL. This
is a practical characterization of a phase-transition phenomenon for the
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Fig. 5. R0-Delaunay random-cluster percolation for z=0.04, R0=30, and d0=5 in the
[0, 700] × [0, 700] square. Experimentally, a critical value for the parameter A is approxi-
mately equal to 0.54.
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R0-Delaunay continuum Potts model. If A is too small, we do not observe
this behavior as in Fig. 4 after 2000 million iterations.

In Fig. 5, we determine experimentally a critical value for the param-
eter A of our model. We determine a function RN(A) of the Delaunay
random-cluster model in the following way. We carry out N=1000 Monte
Carlo (MC) runs for a given parameter A. If we find a percolating cluster
from left to right in each of M runs, then RN(A)=M

N . We repeat this
process for different values of A with increment 0.002. Then we plot RN(A)
against A at discrete values of A. Experimentally, the percolation threshold
pc(z, R0, d0) is the value of A at which RN(A) becomes 1

2 . To give an idea of
pc(z, R0, d0), we obtain approximately pc(0.04, 30, 10) % 0.54 (Fig. 5).
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